Abstract

Materials with interactions between the topology and magnetism are triggering increasing interest. We constructed a two-dimensional (2D) van der Waals heterostructure germanene/Mn2S2, where the germanene is a quantum spin Hall insulator and Mn2S2 provides antiferromagnetic (AFM) interactions. In this structure, a 2D AFM nodal-line semimetal (NLSM) phase is expected without the spin–orbit coupling (SOC), which is of a high density of states around the Fermi level. The band touching rings originate from the intersection between different spin components of p orbitals of germanene. This result provides a possible 2D realization of NLSMs, which are usually realized in three-dimensional systems. When the SOC is present, a quantum anomalous Hall (QAH) state emerges with the annihilation of the band-touching rings. The nontrivial topology is determined by calculating the Chern number and Wannier charge centers. This provides an alternative platform to realize QAH states. These results could also provide the possibility of further understanding the topological states in NLSM and electronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.