Abstract

Switching and amplifying characteristics of a newly developed 2D InGaAs Active Pixel Imager Array are presented. The sensor array is fabricated from InGaAs material epitaxially deposited on an InP substrate. It consists of an InGaAs photodiode connected to InP depletion-mode junction field effect transistors for low leakage, low power and fast control of circuit signal amplifying, buffering, selection and reset. This monolithically integrated active pixel sensor configuration eliminates the need for hybridization with a silicon multiplexer, and in addition, allows the sensor to be front illuminated, making it sensitive to visible as well as near IR signal radiation. Adapting the existing 1.55 micrometers fiber optical communication technology, this integration will be an ideal system of optoelectronic integration for dual band applications near room temperature, for use in atmospheric gas sensing in space and target identification on earth. In this paper, 4 by 4 test arrays will be described. The effectiveness of switching and amplifying circuits will be discussed in terms of circuit in preparation for 2D InGaAs active pixel sensor arrays for applications in multifunctional, transportable shipboard surveillance, night vision and emission spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call