Abstract

Laser-induced incandescence is a technique which enables the measurement of soot volume fractions. However, the laser-induced soot emission might be affected by a fluorescence background generally ascribed to the polycyclic aromatic hydrocarbon compounds (PAHs) present at the soot location. In this paper, spatially resolved distributions of PAH absorbance and soot are obtained in sooting diffusion flames. The original method developed here consists in comparing the emission distributions induced by two different laser wavelengths: (1) at 1064 nm emission signals are exempt from PAH fluorescence and (2) at 532 nm both soot incandescence and PAH emission contribute to the total signal. In addition, the absolute absorption coefficient of the PAH mixture is determined by comparing absorption measurements obtained by cavity ring-down spectroscopy (CRDS) at 1064 nm and 532 nm. The proposed method can provide highly sensitive 2D imaging of PAHs and soot using the fundamental and the second-harmonic frequencies of a single YAG laser. Finally, 2D distributions of PAH absorbance and soot volume fraction calibrated by CRDS are obtained in two diffusion flames, particularly in a very low-sooting flame exhibiting a maximum PAH absorbance of 6×10-4 cm-1 and a maximum soot volume fraction of 3 ppb only. The respective spatial distributions of PAHs and soot are shown to vary with the initial C/O ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.