Abstract
An emotion recognition framework based on a two-channel convolutional neural network (CNN) is proposed to detect the affective state of humans through facial expressions. The framework consists of three parts, i.e., the frontal face detection module, the feature extraction module, and the classification module. The feature extraction module contains two channels: one is for raw face images and the other is for texture feature images. The local binary pattern (LBP) images are utilized for texture feature extraction to enrich facial features and improve the network performance. The attention mechanism is adopted in both CNN feature extraction channels to highlight the features that are related to facial expressions. Moreover, arcface loss function is integrated into the proposed network to increase the inter-class distance and decrease the inner-class distance of facial features. The experiments conducted on the two public databases, FER2013 and CK+, demonstrate that the proposed method outperforms the previous methods, with the accuracies of 72.56% and 94.24%, respectively. The improvement in emotion recognition accuracy makes our approach applicable to service robots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.