Abstract

There is a trade-off between stability and performance in haptic control systems. In this paper, a stability and performance analysis is presented for a scaled teleoperation system in an effort to increase the performance of the system while maintaining the stability. The stability is quantitatively defined as a metric using Llewellynpsilas absolute stability criterion. Position tracking and kinesthetic perception are used as the performance indices. The analysis is carried out using various scaling factors and impedances of human and environment. A two-channel position-position (PP) controller and a two-channel force-position (FP) controller are applied for the analysis and simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.