Abstract

We propose a two-channel holographic diversity interferometer (2ch-HDI) system for single-shot and highly accurate measurements of complex amplitude fields with a simple optical setup. In this method, two phase-shifted interference patterns are generated, without requiring a phase-shifting device, by entering a circularly polarized reference beam into a polarizing beam splitter, and the resulting patterns are captured simultaneously using two image sensors. However, differences in the intensity distributions of the two image sensors may lead to serious measurement errors. Thus, we also develop a two-channel algorithm optimized for the 2ch-HDI to compensate for these differences. Simulation results show that this algorithm can compensate for such differences in the intensity distributions in the two image sensors. Experimental results confirm that the combination of the 2ch-HDI and the calculation algorithm significantly enhances measurement accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.