Abstract

As an emerging non-volatile memory technology, the spin orbit torque magnetic random access memory (SOT-MRAM) has attracted intensive research interest due to its advanced performance. However, the binary storage feature of the SOT-MRAM has become one of the obstacles. In this paper, we present a study of two-bit multi-level SOT-MRAM where two canted in-plane-anisotropy magnetic tunnel junctions (MTJs) store a pair of data. Compared with the previous schemes of multi-level SOT-MRAMs, our proposal enables fully one-step writing without the need of the preset operation. Micromagnetic simulation is performed to validate the functionality of the proposed multi-level cell (MLC) SOT-MRAM, meanwhile, the details of magnetization switching are clearly shown. Simulation results also demonstrate that the device could accomplish the magnetization switching at the sub-nanosecond speed and continuously decreasing power consumption with the size scaling down. In addition, the dipolar field between two cells has little influence on the switching process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call