Abstract

For next generation terahertz applications, heterojunction bipolar transistor (HBT) with reduced dimensions and charge plasma (CP) can be a potential candidate due to simplified and inexpensive process. In this paper, a symmetric lateral two-zone SiGe base heterojunction bipolar charge plasma transistor (HBCPT) with an extruded (extended) base is proposed and its performance at circuit level is studied. The linearly graded electric field in the proposed HBCPT provides improved self gain (β) and cut-off frequency (fT). Two-dimensional (2-D) TCAD and small-signal model based simulations of the proposed HBCPT demonstrates high self gain β 35–172.93 and fT of 1–4 THz for different device parameters. Moreover, fT of 1104.9 GHz and β of 35 can be achieved by decreasing Nb up to 8.2×1017cm−3. Although, fT of 2 THz and 4 THz can also be achieved by reducing the base resistance up to 10 Ω and increasing the emitter/collector length up to 63 nm, respectively. The small-signal analysis of common-emitter amplifier based on the proposed HBCPT demonstrate high voltage gain of 50.11 as compared to conventional HBT (18.1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call