Abstract

The recent results of the Planck experiment put a stringent constraint on the sum of the light neutrino masses, m1+m2+m3 < 0.23 eV (95 % CL). On the other hand, two-zero Majorana mass matrix textures predict strong correlations among the atmospheric angle and the sum of the masses. We use the Planck result to show that, for the normal hierarchy case, the texture with vanishing (2,2) and (3,3) elements is ruled out at a high confidence level; in addition, we emphasize that a future measurement of the octant of the atmospheric mixing angle (or the one sigma determination of it based on recent fit to neutrino data) will put severe constraint on the possible structure of the Majorana mass matrix. The implication of the above mentioned correlations for neutrinoless double beta-decay are also discussed, for both normal and inverted orderings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.