Abstract

Immunoreceptor tyrosine-based activation motifs (ITAM), consisting of two YxxL segments, transmit signals leading to IL-2 gene activation in T cells. We investigated here the functional difference in signal transduction between these two YxxL segments in the CD3zeta membrane-proximal ITAM. N-terminal YxxL mutants failed to induce ZAP-70 phosphorylation, elevation of intracellular Ca2+ concentration ([Ca2+]i) or extracellular signal-regulated kinase (ERK) activation even in the presence of CD28 co-stimulation, whereas a mutant of the leucine residue at the C-terminal YxxL segment retained the ability to induce these events although this mutation abrogated the ability to induce IL-2 gene activation. In marked contrast to ERK activation, c-Jun N-terminal kinase (JNK) activation was observed in all mutants when co-stimulated with CD28. The mutant of the leucine residue at the C-terminal YxxL segment had a defect in the transcriptional activation at the NF-AT cis-element, which was restored to wild-type level by addition of a Ca2+ ionophore, suggesting that the intensity and/or duration of [Ca2+]i elevation defines the threshold of T cell activation in this mutant. Our data collectively indicate that the activation pathways of ERK, JNK and Ca2+ mobilization are differentially regulated through YxxL segments of an ITAM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.