Abstract

Multi‐wavelength Raman light detection and ranging (lidar) observations were analyzed, which were performed in Évora, Portugal, during more than 2 years on a regular basis in the framework of the European Aerosol Research Lidar Network (EARLINET). An aerosol characterization in terms of the lidar ratios at 355 and 532 nm and the extinction and backscatter related Ångström exponents is presented. Aerosol layers in the free troposphere were classified according to their origin. Clear differences in the intensive optical properties were found for layers of mineral dust from the Sahara and from Asia, of anthropogenic aerosol from Europe and from North America, as well as of biomass burning smoke from the Iberian Peninsula and from North America, respectively. In general, the mean Ångström exponents of aerosol layers of the same type, but from closer source regions, were smaller than those from aerosol layers transported over a longer distance. This hints at the deposition of large particles along the transportation path, especially for anthropogenic aerosol and mineral dust. Besides, the seasonal behavior of aerosol in the free troposphere over Évora was studied. Seventy‐three percent of the detected layers were observed during spring and summer. On average, the layers were highest in summer with an overall mean layer height of (3.8 ±1.9) km above sea level (asl), and lowest in winter with (2.3 ±0.9) km asl.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.