Abstract

In recent years, carbonaceous aerosols (CA) have been recognized as a significant contributor to the concentration of particles smaller than 2.5 μm (i.e., PM2.5), with a negative impact on public health and Earth's radiative balance. In this study, we present a method for CA apportionment based on high-time-resolution measurements of total carbon (TC), black carbon (BC), and spectral dependence of absorption coefficient using a recently developed Carbonaceous Aerosol Speciation System (CASS). Two-year-long CA measurements at two different locations within California's Los Angeles Basin are presented. CA was apportioned based on its optical absorption properties, organic or elemental carbon composition, and primary or secondary origin. We found that the secondary organic aerosols (SOA), on average, represent >50 % of CA in the study area, presumably resulting from the oxidation of anthropogenic and biogenic volatile organic components. Remarkable peaks of SOA in summer afternoons were observed, with a fractional contribution of up to 90 %. On the other hand, the peak of primary emitted CA, consisting of BC and primary organic aerosol (POA), contributed >80 % to the CA during morning rush hours on winter working days. The light absorption of BC dominated over the brown carbon (BrC), which contributed to 20 % and 10 % of optical absorption at the lower wavelength of 370 nm during winter nights and summer afternoons, respectively. The highest contribution of BrC, up to 50 %, was observed during the wildfire periods. Although the uncertainty levels can be high for some CA components (such as split between primary emitted and secondary formed BrC during winter nights), further research focused on the optical properties of CA at different locations may help to better constrain the parameters used in CA apportionment studies. We believe that the CASS system combined with the apportionment method presented in this study can offer simplified and cost-effective insights into the composition of carbonaceous aerosols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.