Abstract

Metformin-induced activation of the 5'-AMP-activated protein kinase (AMPK) has been associated with enhanced glucose uptake in skeletal muscle, but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent on AMPK signaling. Oral doses of metformin or saline treatment were given to muscle-specific kinase dead (KD) AMPKα2 mice and wild-type (WT) littermates either once or chronically for 2 wk. Soleus and extensor digitorum longus muscles were used for measurements of glucose transport and Western blot analyses. Chronic treatment with metformin enhanced insulin-stimulated glucose uptake in soleus muscles of WT (∼45%, P < 0.01) but not of AMPK KD mice. Insulin signaling at the level of Akt protein expression or Thr(308) and Ser(473) phosphorylation was not changed by metformin treatment. Insulin signaling at the level of Akt and TBC1D4 protein expression as well as Akt Thr(308)/Ser(473) and TBC1D4 Thr(642)/Ser(711) phosphorylation were not changed by metformin treatment. Also, protein expressions of Rab4, GLUT4, and hexokinase II were unaltered after treatment. The acute metformin treatment did not affect glucose uptake in muscle of either of the genotypes. In conclusion, we provide novel evidence for a role of AMPK in potentiating the effect of insulin on glucose uptake in soleus muscle in response to chronic metformin treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call