Abstract
Computing-in-memory (CIM) based on SRAM is a promising approach to achieving energy-efficient multiply-and-accumulate (MAC) operations in artificial intelligence (AI) edge devices; however, existing SRAM-CIM chips support only DNN inference. The flow of training data requires that CIM arrays perform convolutional computation using transposed weight matrices. This article presents a two-way transpose (TWT) multiply cell with high resistance to process variation and a novel read scheme that uses input-aware zone prediction of maximum partial MAC values to enhance the signal margin for robust readout. A 28-nm 64-kb TWT CIM macro fabricated using foundry-provided compact 6T-SRAM cells achieved <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$T_{\text {AC}}$ </tex-math></inline-formula> of 3.8–21 ns and energy efficiency of 7–61.1 TOPS/W in performing MAC operations using 2–8-b inputs, 4–8-b weights, and 10–20-b outputs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.