Abstract

The cilium and the flagellum are conserved organelles that play fundamental roles in cellular signaling, sensing, and motility. Cilia and flagella have a complex microtubule-based axoneme that includes nine peripheral microtubule doublets, each comprised of a complete A-tubule and an incomplete B-tubule. However, the function of this distinctive geometry has remained unknown until now. In a recent study, Ludek Stepanek and Gaia Pigino use the model organism Chlamydomonas to reveal a new understanding of the functional significance of the A- and B-tubule structure [1]. It is known that ciliary microtubule doublets function as “railways” for intraflagellar transport (IFT), the process required for the assembly and disassembly of cilia. Large protein complexes, known as IFT trains, rapidly traverse up and down the cilium to move ciliary “building blocks” between the cell body and the distal tip of the cilium where the assembly of the cilium occurs. Electron microscopy (EM) has shown that the IFT trains move along the doublets. However, it has not been clear how the railway is organized to avoid collisions between anterograde and retrograde trains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.