Abstract

In this paper, we analyze the secrecy outage probability (SOP) of a cognitive cooperative radio network in a two-way communication in which two secondary source communicate with each other via multiple untrusted half-duplex amplify and forward relays in the absence of direct link. Due to the cognitive scenario, power is allocated to secondary nodes on the basis of outage constraint of the primary network. In the absence of direct link between two sources, communication completes in two time slots. In the first time slot, both of the sources broadcast the information signal and in the second time slot, a selected relay broadcasts the amplified information signals of both of the sources. Relays being untrusted, they can eavesdrop the message from the information signal. A particular relay, which maximizes the end-to-end secrecy capacity, is selected to broadcast the signal. The selected untrusted relay can only eavesdrop the message and other relays forcefully remain in idle condition. At the untrusted relay, information signals of both of the sources act as a jamming to each other. The selected untrusted relay harvests the energy using a power splitting ratio scheme. We observe the performance of the proposed model in terms of SOP. We find the optimal values of energy harvesting factor at which SOP becomes minimum. Several important parameters such as the impact of number of untrusted relays, primary transmit power, peak transmit power of secondary sources, threshold outage rate of primary receiver and threshold secrecy rate on SOP is indicated. An analytical expression for the SOP has been developed in a single integration form. Numerical results based on analytical expression are verified by MATLAB simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call