Abstract

Power-efficient digital controllers are proposed for wireless retinal prosthetic systems. Power management plays an important role in reducing the power consumption and avoiding malfunctions in implantable medical devices. In the case of implantable devices with only one-way communication, the received power level is uncertain because there is no feedback on the power status. Accordingly, system breakdown due to inefficient power management should be avoided to prevent harm to patients. In this study, digital power controllers were developed for achieving two-way communication. Three controllers—a forward and back telemetry control unit, a power control unit, and a preamble control unit—operated simultaneously to control the class-E amplifier input power, provided command data to stimulators, monitored the power levels of the implanted devices, and generated back telemetry data. For performance verification, we implemented a digital power control system using a field-programmable gate array and then demonstrated it by employing a wireless telemetry system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.