Abstract
The neurotransmitter dopamine is capable of inducing apoptosis in postmitotic sympathetic neurons via its oxidative metabolites. To detect genes whose expression is transcriptionally regulated during the early stages of dopamine-triggered apoptosis, we applied the differential display method to cultured sympathetic neurons. One of the up-regulated genes was identified as cyclin B2, which exhibited two waves of induction and destruction, both at the mRNA and protein levels, resembling the sequential oscillations typical of two successive mitotic events in proliferating cells. The time window between the two waves was characterized by a change in expression of other cell-cycle stage-specific genes, and oscillations in proliferating cell nuclear antigen and alterations in cyclin A were observed. Cyclin D1 and cyclin-dependent kinases were undetected and no sign of active DNA synthesis could be observed, indicating that activation of cell-cycle components is incomplete. In comparison with a normal cell cycle, temporal expression profile of these mediators was unsynchronized. Whereas the first wave of cell-cycle changes occurred prior to the commitment of the cells to the death process and could be tolerated by the cells, the second wave of changes coincided with the death commitment point. Our findings indicate that inappropriate and incomplete activation of some cell cycle-related genes in postmitotic neurons occurs during dopamine-triggered neuronal apoptosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.