Abstract

The key job here in the presented work is to investigate the performance of Generalized Ant Colony Optimizer (GACO) model in order to evolve the shape of three dimensional free-form Non Uniform Rational B-Spline (NURBS) curve using stereo (two) views. GACO model is a blend of two well known meta-heuristic optimization algorithms known as Simple Ant Colony and Global Ant Colony Optimization algorithms. Basically, the work talks about the solution of NURBS-fitting based reconstruction process. Therefore, GACO model is used to optimize the NURBS parameters (control points and weights) by minimizing the weighted least-square errors between the data points and the fitted NURBS curve. The algorithm is applied by first assuming some pre-fixed values of NURBS parameters. The experiments clearly show that the optimization procedure is a better option in a case where good initial locations of parameters are selected. A detailed experimental analysis is given in support of our algorithm. The implemented error analysis shows that the proposed methodology perform better as compared to the conventional methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.