Abstract

Quantum process tomography (QPT) methods aim at identifying a given quantum process. QPT is a major quantum information processing tool, since it especially allows one to characterize the actual behavior of quantum gates, which are the building blocks of quantum computers. The present paper focuses on the estimation of a unitary process. This class is of particular interest because quantum mechanics postulates that the evolution of any closed quantum system is described by a unitary transformation. Unitary processes have significantly fewer parameters than general quantum processes (22nqb vs. 24nqb−22nqb real independent parameters for nqb qubits). By assuming that the process is unitary we develop two methods that scale better with the size of the system. In the present paper, we stay as close as possible to the standard setup of QPT: the operator has to prepare copies of different input states. The properties those states have to satisfy in order for our method to achieve QPT are very mild. Therefore, we choose to operate with copies of 2nqb initially unknown pure input states. In order to perform QPT without knowing the input states, we perform measurements on half the copies of each state, and let the other half be transformed by the system before measuring them (each copy is only measured once). This setup has the advantage of removing the issue of systematic (i.e., same on all the copies of a state) errors entirely because it does not require the process input to take predefined values. We develop a straightforward analytical solution that first estimates the states from the averaged measurements and then finds the unitary matrix (representing the process) coherent with those estimates by using our analytical solution to an extended version of Wahba’s problem. This estimate may then be used as an initial point for a fine tuning algorithm that maximizes the likelihood of the measurements. Simulation results show the effectiveness of the proposed methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call