Abstract

To establish animal models with diet-induced metabolic disorders similar to human metabolic syndrome, 2 unhealthy dietary habits featuring a high fat content and a sucrose-containing beverage intake, alone or in combination, were tested on Wistar rats and C57BL/6J mice. The 2 dietary habits were, respectively, simulated by feeding a high-fat diet (regimen A) or additionally providing 30% sucrose (wt/vol) in the drinking water (regimen B). Using a 2 × 2 factorial design, 4 groups of animals were fed chow diet plus plain water (group C), high-fat diet (30% [wt/wt] fat) plus plain water (group A), chow diet plus sucrose in drinking water (group B), and high-fat diet plus sucrose in drinking water (group AB) for 26 weeks. In Wistar rats, regimen B caused a significant increase in visceral fat; serum levels of lipids, glucose, insulin, and uric acid; insulin resistance; and blood pressure, whereas regimen A only caused a significant increase in visceral fat and serum insulin levels (P < .05). In contrast, regimen A induced a full array of metabolic syndrome in C57BL/6J mice; but regimen B only caused slight obesity and hyperlipidemia. In both Wistar rats and C57BL/6J mice, there were no additive effects of the 2 regimens, indicated by significant interactions between regimens A and B on the metabolic indexes measured. These results show that, in terms of inducing metabolic syndrome, Wistar rats are more responsive to sucrose water regimen, whereas C57BL/6J mice are more responsive to the high-fat diet regimen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call