Abstract

In this paper, we present two aspects of the ultrasonic for the synthesis of CuO (II) nanostructures. In the first ultrasound application, we made a copper tip for an ultrasonic probe transducer and used it for electrolysis and ultrasound irradiation processes. This method is named direct sonoelectrochemistry and compares with conventional electrochemistry. CuO (II) nanostructures are obtained after sintering for both direct sonoelectrochemistry method and conventional electrochemistry method. In the second application of ultrasound, the copper nanostructures were generated by the ultrasound ablation method, and then, the heating process was performed for oxidation. The formation of the copper and CuO (II) nanostructures is confirmed by the powder X-ray diffraction (XRD), the field emission electron microscopy (FESEM), and transmission electron microscopy (TEM). The results show that the direct sonoelectrochemistry method generates CuO (II) nanostructures 4.2 times more than conventional electrochemistry. The crystallite size in the electrochemistry methods and direct sonoelectrochemistry is 28.44nm and 26.60nm, respectively. The direct sonoelectrochemistry way is a very flexible method and parameters in electrochemical, ultrasound, and the relationship between them can play an important role in the process of synthesis of nanostructures. The crystallite size in the ultrasound ablation method is 21.13nm and 25.23nm for the copper and CuO (II) nanostructures. The most important advantages of this method are green, fast, and high purity of the produced nanostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.