Abstract

We have numerically studied the evolution of heavy ions that expand in a cold background plasma at a large scale. Two typical collective behaviors of the heavy ions are identified with the conditions where only the traversing heavy ions' initial total mass is different. Our work has demonstrated that a difference in the initial total mass of the moving heavy ions is able to induce completely different collective behaviors of the plasma. The simulation is performed via the hybrid model in which the ions and electrons are treated as classical particles and mass-less fluids, respectively. Due to the imbalance of the electric and magnetic force on the heavy ions, these particles will evolve into different collective patterns eventually. These patterns manifest a rather different stopping behavior of the moving ions and an opposite drifting direction of the electron fluid at the rim of the expanding plasma. Further numerical and analytical calculations show that the imbalance depends not only on the number densities of the plasma ions but also on the spatial variations of the magnetic fields. Our work reveals that the collective behavior of the heavy ions is highly non-linear, and the non-linearity is able to induce different phenomena in the evolution of the system at a large scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.