Abstract

We present results of analyses of Chandra HETG soft X-ray spectra (Lambda = 1.5-25 A) of seven cataclysmic variables. We find that these spectra divide unambiguously into two distinct types. Spectra of the first type, consisting of EX Hya, V603 Aql, U Gem, and SS Cyg, are remarkably well fit by a simple cooling flow model, which assumes only steady-state isobaric radiative cooling. This model has only two free parameters, the maximum temperature, kT(sub max), which provides a rough measurement of the depth of the potential well, and the overall normalization, which provides a highly precise measurement of the total accretion rate. Spectra of the second type, consisting of V1223 Sgr, A Psc, and GK Per, are grossly inconsistent with a simple cooling flow model. They instead exhibit a hard continuum, and, in addition, show strong H-like and He-like ion emission but little Fe L-shell emission, which is consistent with expectations for line emission from a photoionized plasma. Using a simple photoionization model, we argue that the observed line emission for these sources can be driven entirely by the hard continuum. The physical significance of these two distinct types of X-ray spectra is also explored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call