Abstract
Using transcranial magnetic stimulation, we studied the role of the primary motor cortex (M1) in repetitive movements, examining whether the functional contribution of this region is associated with controlling response timing, response implementation, or both. In two experiments, participants performed a rhythmic tapping task, attempting to produce isochronous intervals (range of 350-550 ms) while stimulation was applied over M1 or a control site. M1 stimulation was associated with increased variability of the inter-tap intervals (ITI), and, by manipulating stimulation intensity, we identified two distinct changes in performance: a generalized increase in ITI variability and a delay in the subsequent response when the pulse fell within a restricted window prior to movement onset. Using a series of simulations, we demonstrate that the general increase in variability and the temporally specific delay reflect disruption of response implementation processes rather than an increase in noise associated with response timing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.