Abstract

The conditions of the formation of suborientation states in multidomain and single-domain Pb3(PO4)2 crystals are analyzed. It is shown that suborientation states belong to sets of two structurally different types of domains differing in the angle sign and the orientation of the axis of rotation with respect to the coordinate system of the paraelastic phase. These structural differences are proposed to be described by the Gibbs vector. It is concluded that this macroscopic parameter corresponds to cooperative displacement of some groups of atoms with respect to other groups, with the crystal matrix being at rest. It is found that the modulus of the Gibbs vector is proportional to the spontaneous-strain components and depends linearly on the crystallographic parameter c in the ferroelastic phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call