Abstract

Sex in the nematode Caenorhabditis elegans is normally determined by a genic balance mechanism, the ratio of X chromosomes to autosomes, so that XX animals are self-fertilizing hermaphrodites and X0 animals are males. However, recessive mutations of the autosomal gene tra-1 III cause both XX and X0 animals to develop into males, and a linked dominant mutation causes both XX and X0 animals to develop into females. Here I show that these two kinds of mutation are allelic, and that stable mutant strains can be constructed in which sex is determined not by X-chromosome dosage but by the presence or absence of a single active gene. In these strains the autosomes carrying the tra-1 locus are in effect homomorphic Z and W sex chromosomes, and the sexes are homogametic ZZ males and heterogametic ZW females, in contrast to the wild-type arrangement of homogametic XX hermaphrodites and heterogametic X0 males.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.