Abstract

Direction-selective ganglion cells (DSGCs) respond with robust spiking to image motion in a particular direction. Previously, two main types of DSGCs have been described in rabbit retina: the ON–OFF DSGCs respond to both increases and decreases in illumination, whereas the ON DSGCs respond only to increases in illumination. In this study, we show that there are two distinct types of ON DSGCs, which can be separated by differences in their receptive-field properties, dendritic morphology and tracer-coupling pattern. While both types show robust direction-selectivity, one type responds to increases in illumination with sustained firing, whereas the other responds with relatively transient firing. The two types of ON DSGCs also have distinct dendritic morphologies: the sustained cells give rise to shorter and more numerous terminal dendrites, which are distributed throughout the dendritic field forming a space-filling lattice. In addition, the transient ON DSGCs, but not the sustained ON DSGCs, show tracer-coupling to a mosaic of amacrine cells when filled with Neurobiotin. Both types of ON DSGCs have been encountered in previous studies but were not recognized as distinct types. We propose that the two types also differ in their central projections, with only the sustained cells projecting to the medial terminal nucleus (MTN) of the accessory optic system (AOS).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.