Abstract

The inhibition by light of chloroplast coupling factor ATPase is not due simply to competing photophosphorylation. This inhibition is only partially relieved by either an arsenate-pool trap for released phosphate, or a pyruvate kinase/phosphoenolpyruvate trap for ADP. Moreover, the amount of product return that does occur in the absence of trapping systems, ascertained by incorporation of 32Pi or [2-3H]ADP back into ATP during the hydrolysis reaction, is insufficient to account for the observed activity decrease. In intermediate pi:H2O oxygen exchange studies, the number of water oxygens incorporated into each molecule of Pi produced does not vary with light intensity during the ATPase assay. This indicates that the light-induced change in ATPase activity is not due to an alteration of rat constants involved in the forward and reverse partitioning of the E.ADP.Pi complex. In contrast, ammonium chloride, an uncoupler of photophosphorylation which stimulates membrane-bound coupling factor ATPase when added after light activation, causes a shift in the pattern of intermediate Pi:H2O oxygen exchange toward a lower number of water oxygens incorporated per Pi formed. The effect of NH4+ consistent with ATPase activity stimulation caused by enhanced partitioning forward of the E.products complex. These observations suggest the operation of two mechanisms of regulation of ATP ase activity during chloroplast de-energization. However, a direct effect of NH4+ on the coupling factor itself, independent of the membrane energization effect, cannot be ruled out by the present studies. Additional oxygen exchange experiments lead to the conclusion that the binding of ATP at a site catalyzing extensive ATP:H2O back exchange in the native chloroplast system ( Wimmer, M. J., and Rose, I. A. (1977) J. Biol. Chem. 252, 6769-6775) is different from the binding of ATP for net hydrolysis in the system activated for ATPase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call