Abstract

Since the 1990s, reasoning with Venn and Euler diagrams has been studied from mathematical and logical viewpoints. The standard approach to a formalization is a region-based approach, where a diagram is defined as a set of regions. An alternative is a relation-based approach, where a diagram is defined in terms of topological relations (inclusion and exclusion) between circles and points. We compare these two approaches from a proof-theoretical point of view. In general, diagrams correspond to formulas in symbolic logic, and diagram manipulations correspond to applications of inference rules in a certain logical system. From this perspective, we demonstrate the following correspondences. On the one hand, a diagram construed as a set of regions corresponds to a disjunctive normal form formula and the inference system based on such diagrams corresponds to a resolution calculus. On the other hand, a diagram construed as a set of topological relations corresponds to an implicational formula and the inference system based on such diagrams corresponds to a natural deduction system. Based on these correspondences, we discuss advantages and disadvantages of each framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.