Abstract

1. Single-channel recordings were made from single, enzymatically isolated smooth muscle cells of rat portal vein by the patch-clamp technique. 2. Unitary potassium currents were identified through two types of K-channels with conductances in 60:130 mM K-gradient of 50 and 22 pS; these are referred to as LK and MK channels respectively. 3. The LK channels became extremely active if isolated patches were created into nucleotide-free solution; activity was inhibited by ATP applied to the inner surface of the patch with a half maximal inhibition (Ki) of 11-23 microM. Channel activity declined and disappeared with time and could be regenerated by a brief application of Mg-ATP or a nucleoside diphosphate such as UDP (in the presence of Mg). LK channel activity was rarely stimulated by levcromakalim and not by pinacidil (K-channel openers, KCOs) but was blocked by glibenclamide. 4. Activity of MK channels declined if isolated patches were created into nucleotide free solution; activity reappeared if UDP or ATP alone (in the presence of Mg) was applied; pinacidil or levcromakalim in the presence of ATP or UDP further increased channel activity which was blocked by glibenclamide. 5. The LK channel inhibited by ATPi is very similar in its conductance and other properties to the KATP channel described in tissues other than smooth muscle, in its conductance and properties the MK channel resembles the KNDP channel we have previous described as present in other smooth muscles and opening in responses to KCOs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.