Abstract
The 39–42 amino acid long, amphipathic amyloid-β peptide (Aβ) is one of the key components involved in Alzheimer's disease (AD). In the neuropathology of AD, Aβ presumably exerts its neurotoxic action via interactions with neuronal membranes. In our studies a combination of 31P MAS NMR (magic angle spinning nuclear magnetic resonance) and CD (circular dichroism) spectroscopy suggest fundamental differences in the functional organization of supramolecular Aβ1–40 membrane assemblies for two different scenarios with potential implication in AD: Aβ peptide can either be firmly anchored in a membrane upon proteolytic cleavage, thereby being prevented against release and aggregation, or it can have fundamentally adverse effects when bound to membrane surfaces by undergoing accelerated aggregation, causing neuronal apoptotic cell death. Acidic lipids can prevent release of membrane inserted Aβ1–40 by stabilizing its hydrophobic transmembrane C-terminal part (residue 29–40) in an α-helical conformation via an electrostatic anchor between its basic Lys28 residue and the negatively charged membrane interface. However, if Aβ1–40 is released as a soluble monomer, charged membranes act as two-dimensional aggregation-templates where an increasing amount of charged lipids (possible pathological degradation products) causes a dramatic accumulation of surface-associated Aβ1–40 peptide followed by accelerated aggregation into toxic structures. These results suggest that two different molecular mechanisms of peptide–membrane assemblies are involved in Aβ′s pathophysiology with the finely balanced type of Aβ–lipid interactions against release of Aβ from neuronal membranes being overcompensated by an Aβ–membrane assembly which causes toxic β-structured aggregates in AD. Therefore, pathological interactions of Aβ peptide with neuronal membranes might not only depend on the oligomerization state of the peptide, but also the type and nature of the supramolecular Aβ–membrane assemblies inherited from Aβ′s origin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.