Abstract

Single-channel recordings from mouse C2 myotubes indicate that maturation of skeletal muscle is accompanied by the appearance of two types of fast acetylcholine (ACh) receptor channels that are each functionally distinct from the embryonic receptor type present at early stages of differentiation. The embryonic receptor type has a low conductance (45 pS) and long channel open time, rendering slowly decaying synaptic currents. One fast channel type that appears during muscle maturation is distinguished from the embryonic receptor type on the basis of both higher conductance (65 pS) and shorter open time. However, single-channel recordings from differentiated mouse skeletal muscle cell line (C2) point to the existence of a second fast receptor type, which has a conductance similar to the embryonic receptor type (45 pS), yet significantly reduced mean channel open time. Analyses of individual channel function at high ACh concentrations directly demonstrate the coexistence of two kinetically distinct types of 45 pS ACh receptors. Openings by fast type and slow embryonic type of 45 pS receptors occurred in bursts, allowing distinction on the basis of both mean open time and open probability for individual receptors. The embryonic type of 45 pS receptor has an open time approximately twofold longer than the fast-receptor counterpart. Additional differences were reflected in the open probability distributions for fast and slow 45 pS receptor types. Both types of 45 pS receptor were kinetically distinguishable from the 65 pS receptor. We found no support for the idea that the slow and fast 45 pS receptor types result from the interconversion of dual gating modes involving the same receptor protein. Our results are consistent with the idea that the acquisition of fast synaptic current decay, required at mature neuromuscular synapses, is the result of the up-regulation of two distinct fast types of nicotinic ACh receptors during skeletal muscle development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.