Abstract

The bacterial uptake of steroids and their metabolites remains poorly understood. We investigated two transporters associated with cholate catabolism in Rhodococcus jostii RHA1. Reverse transcriptase quantitative-PCR indicated that an ATP-binding cassette (ABC) transporter and a major facilitator superfamily (MFS) transporter were upregulated 16.7- and 174-fold, respectively, during the exponential phase of growth on cholate compared to growth on pyruvate. Gene knockout analysis established that these transporters are required for the reassimilation of distinct metabolites that accumulate during growth on cholate. The ABC transporter, encoded by camABCD, was essential for uptake of 1β(2'-propanoate)-3aα-H-4α(3"(R)-hydroxy-3"-propanoate)-7aβ-methylhexahydro-5-indanone and a desaturated analog. The MFS transporter, encoded by camM, was essential for uptake of 3,7(R),12(S)-trihydroxy-9-oxo-9,10-seco-23,24-bisnorchola-1,3,5(10)-trien-22-oate. These metabolites differ from cholate metabolites reported to be excreted by proteobacteria in that they retain an isopropanoyl side chain at C-17. The uptake of these metabolites was necessary for maximal growth on cholate: a ΔcamB mutant lacking the permease component of the ABC transporter and a ΔcamM mutant lacking the MFS transporter grew to 74% and 77%, respectively, of the yield of the wild type. This study demonstrates for the first time the requirement for specific transporters for uptake of cholate metabolites and highlights the importance and complexity of transport processes associated with bacterial steroid catabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call