Abstract
We determine the exact dimension of the $$ {\bf{F}}_2 $$ -vector space of $$ {\bf{F}}_q $$ -rational 2-torsion points in the Jacobian of a hyperelliptic curve over $$ {\bf{F}}_q $$ (q odd) in terms of the degrees of the rational factors of its discriminant, and relate this to genus theory for the corresponding function field. As a corollary, we prove the existence of a point of order > 2 in the Jacobian of certain real hyperelliptic curves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.