Abstract

The purpose of the present study was to examine the effects of acoustic trauma and hair cell loss and regeneration on the two-tone rate suppression (TTRS) boundaries of cochlear ganglion neurons in chickens. Chickens were exposed for 48 hours to a 525-Hz, 120-dB SPL tone which destroyed the hair cells and tectorial membrane in a crescent-shaped patch along the abneural side of the basilar papilla. Afterwards, TTRS boundaries were recorded from cochlear ganglion neurons at 0-1, 5, 14, and 28 days postexposure. Acoustic trauma reduced the percentage of neurons with TTRS boundaries below CF (TTRSb) (52.6% to 8.2%) and above CF (TTRSa) (88.4% to 46.6%). In addition, the exposure reduced TTRS boundary slopes, elevated best suppression threshold (BST), and increased the frequency separation between the tips of the TTRS boundaries and CF. All the TTRS measures started to recover by 5 days postexposure and by 14 days and 28 days postexposure, most measures had recovered to normal levels. However, the BST, TTRS slopes, and the frequency separation of TTRSb boundaries from CF were still slightly abnormal near the exposure frequency. In addition, the percentage of neurons with TTRS below CF was reduced significantly. The partial recovery of TTRS boundaries is presumably due to the regeneration of hair cells and the lower honeycomb layer of the tectorial membrane. The residual TTRS deficits observed 28 days postexposure were most closely associated with the missing upper fibrous layer of the tectorial membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call