Abstract

This paper presents a theoretical analysis of the line shapes and signal-to-noise ratios obtained in two-tone optical heterodyne spectroscopy with tunable lead-salt diode lasers. The theory is described in terms of the frequency-modulation (FM) index β, the amplitude-modulation (AM) index M, their relative phase shift ψ, and the ratio of modulation frequency to the absorption-line half-width ν¯m. Synthetic spectra are presented for both Gaussian and Lorentzian line shapes and show considerable structural variation with the theoretical parameters. Experimental two-tone optical heterodyne spectra were obtained by modulating a specially modified lead-salt diode laser in the radio-frequency region. The experimental spectra obtained from NH3 absorption lines confirm the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.