Abstract

AbstractWater distribution network models for large municipalities have tens of thousands of interconnecting pipes and junctions with complex hydraulic controls. Many water security applications, including sensor placement optimization, require detailed simulation of potential contamination incidents. The postsimulation optimization problem can easily exceed memory on standard desktop computers. Large networks can be skeletonized to reduce computation; however, this alters network hydraulics, and therefore sensor placement. The objective of this paper is to evaluate a two-tiered sensor placement approach that combines hydraulic and water quality simulations using all-pipes, or original, network models with subsequent geographic aggregation of time and impact values to reduce memory requirements. The two-tiered approach first places sensors on aggregated regions, then refines the solution to actual nodes in the original model. The two-tiered sensor placement approach is compared to results using the origin...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.