Abstract

AbstractThis paper studies the operating characteristics of the variant of an M[x]/G/1 vacation queue with startup and closedown times. After all the customers are served in the system exhaustively, the server shuts down (deactivates) by a closedown time, and then takes at most J vacations of constant time length T repeatedly until at least one customer is found waiting in the queue upon returning from a vacation. If at least one customer is present in the system when the server returns from a vacation, then the server reactivates and requires a startup time before providing the service. On the other hand, if no customers arrive by the end of the J th vacation, the server remains dormant in the system until at least one customer arrives. We will call the vacation policy modified T vacation policy. We derive the steady‐state probability distribution of the system size and the queue waiting time. Other system characteristics are also investigated. The long‐run average cost function per unit time is developed to determine the suitable thresholds of T and J that yield a minimum cost. Copyright © 2007 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.