Abstract

The first problem considered is that of testing for the reality of the covariance matrix of a p-dimensional complex normal distribution, while the second is that of testing that a 2p-dimensional real normal distribution has a p-dimensional complex structure. Both problems are reduced by invariance to their maximal invariant statistics, and the null and non-null distributions of these are obtained. Complete classes of unbiased, invariant tests are described for both problems, the locally most powerful invariant tests are obtained, and the admissibility of the likelihood ratio tests is established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.