Abstract

In this work we use the two-temperature model (TTM) coupled to molecular dynamics (MD) with sinks at the boundaries of the electronic subsystem to study crystal-growth rate in a quasi-one-dimensional tungsten crystal into a supercooled melt. The possibility of varying the extension of the electronic grid along with the sinks allows a more realistic description of the electronic thermal transport away from the system, providing a considerable heat dissipation from the crystallization front. Based on this approach, our results regarding crystal-growth rates are not affected even if the size of the system is changed. Moreover, comparisons are established with respect to MD and standard TTM simulations. For these comparisons between models, something remarkable is found, and it is that the temperature and the value of the maximum growth rate are the same. In contrast, the inclusion of sinks has a great impact with respect to the standard approaches specially reflected at low temperatures, where a frustration of the liquid–crystal interface dynamics is seen until a state of zero crystal growth is reached, which is not possible to characterize quantitatively since a kind of stochastic behavior is present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.