Abstract

We present two-temperature, radiative general relativistic magnetohydrodynamic simulations of Magnetically Arrested Discs (MAD) that launch powerful relativistic jets. The mass accretion rates of our simulations are scaled to match the luminosity of the accretion flow around the supermassive black hole in M87. We consider two sub-grid prescriptions for electron heating: one based on a Landau-damped turbulent cascade, and the other based on heating from trans-relativistic magnetic reconnection. The simulations produce jets with power on the order of the observed value for M87. Both simulations produce spectra that are consistent with observations of M87 in the radio, millimetre, and submillimetre. Furthermore, the predicted image core-shifts in both models at frequencies between 15 GHz and 86 GHz are consistent with observations. At 43 and 86 GHz, both simulations produce wide opening angle jets consistent with VLBI images. Both models produce 230~GHz images with distinct black hole shadows that are resolvable by the Event Horizon Telescope (EHT), although at a viewing angle of 17 degrees, the 230 GHz images are too large to match EHT observations from 2009 and 2012. The 230 GHz images from the simulations are dynamic on time-scales of months to years, suggesting that repeated EHT observations may be able to detect the motion of rotating magnetic fields at the event horizon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.