Abstract

We investigate the evolution of intracluster medium during a cluster merger, explicitly considering the relaxation process between the ions and electrons by N-body and hydrodynamical simulations. When two subclusters collide each other, a bow shock is formed between the centers of two substructures and propagate in both directions along the collision axis. The shock primarily heats the ions because the kinetic energy of an ion entering the shock is larger than that of an electron by the ratio of masses. In the post-shock region the energy is transported from the ions to electrons via Coulomb coupling. However, since the energy exchange timescale depends both on the gas density and temperature, distribution of electron temperature becomes more complex than that of the plasma mean temperature, especially in the expanding phase. After the collision of two subclusters, gas outflow occurs not only along the collision axis but also in its perpendicular direction. The gas which is originally located in the central part of the subclusters moves both in the parallel and perpendicular directions. Since the equilibrium timescale of the gas along these directions is relatively short, temperature difference between ions and electrons is larger in the directions tilted by the angles of $\pm 45^\circ$ with respect to the collision axis. The electron temperature could be significantly lower that the plasma mean temperature by $\sim 50 %$ at most. The significance of our results in the interpretation of X-ray observations is briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.