Abstract
A one-dimensional two-temperature model of generalized thermoelasticity theory in half-space has been studied in this present discussion with memory-dependent derivative. The fuzzy approach has been applied to construct the governing equations. The fuzzy variables such as stress, strain and so on are represented in r-cut. The coupled partial differential equations' analytical solutions are obtained in Laplace transform domain subject to a stress-free boundary with a time-dependent imprecise thermal shock. A suitable numerical inverse Laplace transformation technique is applied to get the space time-domain results for different time delay parameter values and several kernel functions. Two examples of numerical results in the fuzzy environment are performed and are compared with the crisp results graphically. The concluding remarks are made based on numerical results and graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.