Abstract

Flow induced vibrations of two rough, rigid, tandem-cylinders on springs are investigated for power conversion for Reynolds number 30,000 ≤ Re ≤ 120,000. Passive turbulence control (PTC) in the form of roughness strips is employed to enhance FIV and increase the power harness efficiency of the VIVACE (Vortex Induced Vibration for Aquatic Clean Energy) converter. Numerical simulations are performed using two-dimensional, Unsteady Reynolds-Averaged Navier-Stokes equations with the Spalart-Allmaras turbulence model. The center-to-center spacing ratio d / D of the two cylinders is set as 2.0 or 2.57 with mass ratio m* = 1.343 , damping ratio ζ = 0.26, and stiffness K = 1,200 N/m. Amplitude response, frequency response, interaction, energy harvesting, and conversion efficiency are presented and discussed. The main conclusions are: (1) In the VIV region at Re = 60,000, the amplitude response, frequency response, harnessed power, and power conversion efficiency of the upstream cylinder is the same for the two spacing ratios. Due to the shedding effect, the motion of the downstream cylinder for spacing ratio d/D = 2.0 is more severely suppressed than spacing ratio d/D = 2.57, which reduces the harnessed power and conversion efficiency for the downstream cylinder. (2) In the galloping region at Re = 110,000, due to the different impingement of the shed vortices on the downstream cylinder, the upstream cylinder harnesses more power and has higher energy conversion efficiency for spacing ratio d/D = 2.0 than d/D = 2.57.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.