Abstract
AbstractMOF‐5‐derived porous carbon (MDPC) materials, MDPC‐600 and MDPC‐1000, were prepared by pyrolysis at 600 °C in nitrogen atmosphere prior to acid treatment and at 1000 °C in nitrogen atmosphere, respectively. The samples were characterized by X‐ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), X–MaxN energy spectrum, and transmission electron microscopy (TEM). The test results of MDPC‐1000 and MDPC‐600 show that both are microporous amorphous carbon with the 2.7 nm diameter pore size, indicating that the micropore of MOF‐5 is well preserved during pyrolysis. MDPC‐1000 and MDPC‐600 have specific surface areas of 1570.9 m2/g and 1029.5 m2/g, respectively. MDPC‐1000 and MDPC‐600 were loaded with Fe ions to prepare Fe(III)/MDPC composite materials, which were used as catalysts for phenol hydroxylation. The results show that Fe(III)/MDPC‐1000 has higher catalytic effect than Fe(III)/MDPC‐600. During one hour phenol hydroxylation at 80 °C with 3 wt.% Fe concentration and a mass ratio of catalyst to phenol of 0.053, Fe(III)/MDPC‐1000 provides maximum phenol conversion, dihydroxybenzene yield, and dihydroxybenzene selectivity of 61.4%, 54.3%, and 88.4%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.