Abstract
NusG is a conserved regulatory protein that interacts with elongation complexes (ECs) of RNA polymerase, DNA, and RNA to modulate transcription in multiple and sometimes opposite ways. In Escherichia coli, NusG suppresses pausing and increases elongation rate, enhances termination by E. coli ρ and phage HK022 Nun protein, and promotes antitermination by λN and in ribosomal RNA operons. We report NMR studies that suggest that E. coli NusG consists of two largely independent N- and C-terminal structural domains, NTD and CTD, respectively. Based on tests of the functions of the NTD and CTD and variants of NusG in vivo and in vitro, we find that NTD alone is sufficient to suppress pausing and enhance transcript elongation in vitro. However, neither domain alone can enhance ρ-dependent termination or support antitermination, indicating that interactions of both domains with ECs are required for these processes. We propose that the two domains of NusG mediate distinct interactions with ECs: the NTD interacts with RNA polymerase and the CTD interacts with ρ and other regulators, providing NusG with different combinations of interactions to effect different regulatory outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.