Abstract

Growth differentiation factor 9 (GDF9) gene is an effective intra-ovarian regulator; it plays a crucial role in early folliculogenesis in female mammals. The non synonymous mutations: g.3905A > C (also known as p.Gln320Pro/Q320P) and g.4135G > A (also know as p.Val397Ile/V397I), are two well-known and controversial single nucleotide polymorphisms (SNPs) within GDF9 gene in goats with different prolificacy, and so far, there were no studies on linkage between Q320P and V397I. Therefore, the aim of this work was to study whether Q320P and V397I mutations have a significant effect on litter size, in Shaanbei white cashmere goats (SBWC, n = 1511), and to explore the specific relationship between these two SNPs. The results showed that both of Q320P and V397I mutations exhibited three genotypes; the minor allele frequencies (MAF) of the SNPs were 0.286 and 0.477, respectively; and these two SNPs were in strong linkage disequilibrium (D' = 0.976, r2 = 0.348) in the studied goats. Moreover, association analyses revealed that Q320P was significantly associated with the first-born litter size in goats irrespective of the sample size (n = 1511; P = 0.008), while V397I significantly affected litter size until the sample size crossed 1300 (P = 0.015). Meanwhile, the diplotypes PP-II and QP-VI were observed to have a superior effect on litter size (P = 3.78 × 10−5) to that of the haplotypes (P = 1.12 × 10−7). Thus, the findings led us to assume that Q320P mutation was the major SNP affecting goat litter size. These findings can provide useful DNA markers for selecting superior individuals in marker-assisted selection (MAS) for breeding in relation to fecundity in goats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call