Abstract
With the rapid spread of image editing software, anyone can easily create, distribute, and forge images. Although techniques to detect image forgery have been widely studied, current techniques have significant limitations, such as specific file formats, manipulations, or compression qualities. Although deep learning techniques have been introduced to detect various manipulations, such as blurring, median filtering, and Gaussian noise, these techniques are only suitable to detect forgeries of uncompressed images, and are difficult to apply in practice because most images are compressed for distribution. Therefore, a two-stream neural network approach for image forensics that is robust to compression is proposed. The two-stream neural network is based on constrained convolutional neural network and Markov characteristics to consider compression. Experimental results show that the proposed method overcomes current technique limitations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.