Abstract

The linearized theory of two-stream free electron lasers (FELs) consisting of a relativistic electron beam transported along the axis of a planar wiggler in the presence of an axial guiding magnetic field is proposed and investigated. The dispersion relation is derived employing linear fluid theory. The characteristics of the dispersion relation are analyzed by numerical solutions. The results show that the growth rate is considerably enhanced on suitable ranges of normalized axial guiding magnetic field and normalized wave number. The effect of the difference between the velocities of the two beams, Δv=v1−v2, in this configuration of FELs is also considered and found that the growth rate is remarkably affected by velocity differences. It is also shown that the effect on the electrostatic mode is stronger than electromagnetic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.